It’s a good candidate since it sounds like there’s no precision mechanical components like there would be in a hard drive. Does anyone have ideas for how I’d go about this? Is there a barrier I’m not considering?
I know how to make basic semiconductors already, so that’s not an issue.
Edit: I’ve got an answer written down in the comments now. TL;DR you’d still need lithography to do it the OG way, because of the patterned magnetic material that directed bubbles around the medium, but material requirements are actually pretty flexible.


Do you understand the physics of the bubble itself at all? I’m a bit unclear on how a this pushes around domain walls in the first place. Like, it makes a kind of sense, electrons hold spin and they’re moving, but the actual physical rate at which they do that is pretty low for even large currents. I take it it’s a magnetic field itself that moves them based on what you wrote? How does that not erase anything?
It does look like two big coils in the diagrams. I wonder if the edge of the wafer was kept “empty” for bubbles to move in and out of, then.
I only vaguely really know what’s going on. I did some more research after commenting, and I think I understand a little bit more. The TI bubble memory has two separate layers. On of them, the ‘magnetic epitaxial film’, basically has a lot of magnetic molecules arranged to point in the same direction. The second layer has circles made of some nickel-iron alloy. What I think is happening is that the actual magnetic bubbles are held on the film, and the iron circles act as tracks the bubbles are pulled along. I don’t think electrons in the bubble are actually moving, but I think the electron spin is. That would explain why the loops are capable of moving the bubbles faster than electrons.
Hmm. I’ll keep researching too. Thanks for the help.